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Contradicting Design Requirements

The need for innovative tools Is apparent now
more than ever as more complex design
requirements are surfacing such as:

Cost i‘? (ﬁq
Performance & safety ﬁ; Y‘N
v,

Quality

Time to market & short life,
cycle

Environmental impacts
Aesthetics (wow, lust for

the product, I got to have
it ..)

Major Changes in
Industry’s Business Model
daratech:DP82002 .




Cycle development time from concept to
production is being compressed significantly
- 1992: 60 months

- 1996: 48 months

— 2000: 18 months

Vehicle designs are tailored to focused markets

Vehicles are being manufactured more on a
global scale

Vehicles designed increasingly through multiple
engineering sites around the world

Need for enabling companies throughout the
supply chain and extended enterprise to share
Information through a web-centric visualization
approach
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Design Process Status:

e Great Advances iIn the Design Process
Moving from paper drawing to electronic drawing
Moving from electronic drawing to 3D wire frame
Moving from 3D wire frame to solid modeling

Moving to Parametric feature based solid modeling
(commodity: Granite, Para-solids, Acis, etc)

PDM/ERP/MRP/PLM ??7?
Still tradition and experience govern the design choices

« What iIs next
— Integrated Product Development Process (AEE)
— Knowledge capture and reuse (KBE)
 Documentation of rationale for the design
e Best practice automation (Self designed parts)
— Collaborative design
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Engineering Design and Simulation Tools

The simulation tools such as FEA, CFD, CAM, although
easler to use and better integrated with CAD, become
more powerful and more complex.

Typically by the time they provide feedback to a design
that design has evolved over several iterations due to
packaging, cost, availability, manufacturing, etc.

Behavioral modeling provides a return to simplicity by
Imposing fundamental engineering rules at the CAD
level.

Behavioral modeling is a new paradigm shift in the
design process empowering engineers to create
optimum, innovative, requirement driven designs on
their first try.
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Quality - Robust Design

e Definition of Robust Design:
Deliver customer expectations at ‘ ‘
profitable cost regardless of: .
customer usage
variation in manufacturing

variation in supplier
variation in distribution, delivery & installation

degradation over product life

e Goals of Robust Design (shift and squeeze)
— Shift performance mean to the target value
- Reduce product’s performance variability
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Statistical Design Performance Simulation?

“You ‘ve got to be passionate lunatics about the quality issue ...
Jack Welch

“U.S. autos fight poor quality reputation ...”
Joe Miller / The Detroit News

“ Product quality requires managerial, technological and
statistical concepts throughout all the major functions of the
organization ...”

Josheph M. Juran

Variation (thickness, properties, surface finish,
loads, etc.) is ...

DOE, Six Sigma, Statistical FEA, Behavioral
Modeling .. THE DEFENCE
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Improved Quality reduced Total Cost

el ost Customers

eLiability (R&D)

eRecalls (production)
170)
@)
@)

*Rework

Examples:
Titanic
Asbestos

Breast Implants

Bhopal, India
¢ Defect L evel
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; "
CFD * CFM * CAIV ’

A '6s *DFMA * DOE * FMEA

. CED * JIT * PBS * PFMEA

\ QFD * SDPS * PCA

SPC * SCM * SW
Robust Design

o

=

.l-||-
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Elements of Quality Management Process

Agile Improvement Process
Axiomatic Design
Benchmarking & Benchtrending
Catch-ball

Cellular Manufacturing
Continuous Flow Development
Continuous Flow Manufacturing
Cycle Time Management
Defect Reduction

Design for Manufacturing and
Assembly

Design of Experiments

Failure Modes effects Analysis
Cause and Effect Diagrams
Just In Time

DRS00 _

Performance Based Specifications
Process Failure Mode Effects
Analysis

Quality Function Deployment
Robust Design
Self-Directed Work Teams

Statistical Design Performance
Simulation

Process Capability Analysis
Statistical Process Control
Supply Chain Management
Synchronous Workshops
Theory of Constraints
Thinking Process Reality Trees
Total Productive Maintenance
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: 41
Elements of Quality Management Process - :

e Although all the elements of quality management
process are closely connected they remain apart

because they have been developed independently
from each other

Integration of these tools is critical to the

organization and necessary for successful federation
and robust optimization efforts

| -
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e Accounts for uncertainties through the use of empirical
Safety factors:
— Are derived based on past experience
— Do not guarantee safety or satisfactory performance

— Do not provide sufficient information to achieve optimal use of available
resources
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Noise & Control Parameters

 Noise parameters:

Factors that are beyond the control of the de3|gner |
material property variability ' e
manufacturing process limitations
environment temperature & humidity
component degradation with time

e Control Parameters:
Factors that the designer can control
— geometric design variables
material selections
design configurations
manufacturing process settings
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Tools for Robust Design

e Design Of Experiments

— Exploits nonlinearities and interactions
between noise & control parameters to
reduce product performance variability

— full factorial, fractional factorial, Monte-
Carlo, LHC
e Response Surface Methods
— Central Composite Design
— Box-Behnken Design
e 6-sigma design
- ldentifying & qualifying causes of variation
— Centering performance on specification
target

— Achieving Six Sigma level robustness on the
key product performance characteristics
with respect to the quantified variation
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Design Exploration 1 Variable

0 10 20 30 40 50 60
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Design Exploration 2 Variables
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Design Exploration 3 Variables
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Engineering Quality into Digital Functional Vehicles
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CETOL 6s

Mechanical Variation
Management System

3D Tolerance Analysis /
Allocation Software

Sensitivity and Statistical
Analysis

Leverages Mfg Process
Capability Data

Optimized for DFSS Experts
and Pro/E Users
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Sources of Assembly Variation:
Multiple Configurations of Assembly

Tools like CE/TOL addresses the issue that one assembly constraint
In Pro/E can have many configurations affecting variation

Dwheo|@asnGed GE0gsr

B | Sereste | Cottur
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Sources of Assembly Variation:
Fastened Interface Variation

« Higher level assembly constraints require unique representation

« CETOL recognizes full range of configurations

e e T P A e e
@SRl | FasCe® | HEOE-
&

o] PEATIRL o [FETEOH

BE = @ | e
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Statistical Design Performance Simulation

Simulation of input
parameters (material,

: Statistical analysis of
thickness, spot welds, J

output parameters
(stress, fatigue life, ...)
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Probabilistic Analysis setup within ANSYS is SIMPLE

M\ ANSYS Main Menu E3

A\ Prob Design

i Define a Handom ¥Yariable

i Quantify Gausszian Distribution

o | cencer |

]

Trunc Gauss
Lognormal 1
Lognormal 2
Triangular
Uniform
Exponential
Beta

: Carlo Simulation
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Automotive Example
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Probability Distributions of input and output variables

Propability of Input Variable V
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Reliability Based Optimization

Moise Parameters
lig O

v

4 3

Desired &pﬂﬁ{ﬂff&m Parametric
"
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Control Parameters
i, i,

i
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Generate trial design of the optimization design variables 0DV
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RBO Workflow

Probabilistic Design
Loop

Optimization Loop with
reliability constraints
Deterministic Optimum
designs could lead to

unreliable or even
catastrophic designs
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Workflow for Robust Design System

Histogram of Load Variation (Lognormal)
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PDS for CAD Design Variables
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External Analysis - ANSYS PDS
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BMX External Analysis & Optimization Features
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Pro-Engineer

% . Optimization/Feasibility

Solid Model Feature 1

Solid Model Feature 2

Analysis Feature Create FE Mesh, Create ANSYS input
Loads and BC files

Generate Parameters

from Response Compute Mean & Establish Random
Variables Standard Deviation of Variables and Perform

Response Variables Probabilistic Analysis
Optimization Loop

Optimization Feature
Add Dimenzian... Add Eanameten..
Establish Design

Variables, Reliability

fjmngotpttompm?m When a Designer makes a change (i.e. hole
Response Variables diameter) the component thickness updates

automatically to meet desired quality criteria
and minimize weight
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*Productivity improvements up to 90%

Improve quality ( 6 s) and system level performance
(MDO)

eEnables integrated product development system

eCaptures and utilizes design knowledge in early design
stages
eGreater Utilization of Engineering Talent

eDrudgery of multiple simulation runs passed onto computer

eGreater portion of the engineer’s time spent on fundamental
engineering

More time to understand customer requirements and focus on
design constraint definition
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